Dynamical localization in non-Hermitian quasicrystals

نویسندگان

چکیده

We study the localization transition in periodically driven one-dimensional non-Hermitian lattices where piece-wise two-step drive is constituted by uniform coherent tunneling and incommensurate onsite gain loss. find that system can be localized, delocalized, or mixed-phase depending on driving frequency phase shift of complex potential. Two critical frequencies are identified, first one corresponds to largest potential so quasi-energy spectrum still real all states extended, second disappear full spectrum, very weak leads emergence localized when lower than this frequency. In high limit, we separates two regions with respectively tends a constant value captured an effective Hamiltonian.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Hermitian localization in biological networks.

We explore the spectra and localization properties of the N-site banded one-dimensional non-Hermitian random matrices that arise naturally in sparse neural networks. Approximately equal numbers of random excitatory and inhibitory connections lead to spatially localized eigenfunctions and an intricate eigenvalue spectrum in the complex plane that controls the spontaneous activity and induced res...

متن کامل

Dynamical Systems and Non-Hermitian Iterative Eigensolvers

Simple preconditioned iterations can provide an efficient alternative to more elaborate eigenvalue algorithms. We observe that these simple methods can be viewed as forward Euler discretizations of well-known autonomous differential equations that enjoy appealing geometric properties. This connection facilitates novel results describing convergence of a class of preconditioned eigensolvers to t...

متن کامل

Population Dynamics and Non-Hermitian Localization

We review localization with non-Hermitian time evolution as applied to simple models of population biology with spatially varying growth profiles and convection. Convection leads to a constant imaginary vector potential in the Schrödinger-like operator which appears in linearized growth models. We illustrate the basic ideas by reviewing how convection affects the evolution of a population influ...

متن کامل

Non-Hermitian Localization and Population Biology

The time evolution of spatial fluctuations in inhomogeneous d-dimensional biological systems is analyzed. A single species continuous growth model, in which the population disperses via diffusion and convection is considered. Time-independent environmental heterogeneities, such as a random distribution of nutrients or sunlight are modeled by quenched disorder in the growth rate. Linearization o...

متن کامل

Ritz Value Localization for Non-Hermitian Matrices

Rayleigh–Ritz eigenvalue estimates for Hermitian matrices obey Cauchy interlacing, which has helpful implications for theory, applications, and algorithms. In contrast, few results about the Ritz values of non-Hermitian matrices are known, beyond their containment within the numerical range. To show that such Ritz values enjoy considerable structure, we establish regions within the numerical ra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review

سال: 2022

ISSN: ['0556-2813', '1538-4497', '1089-490X']

DOI: https://doi.org/10.1103/physreva.105.022215