Dynamical localization in non-Hermitian quasicrystals
نویسندگان
چکیده
We study the localization transition in periodically driven one-dimensional non-Hermitian lattices where piece-wise two-step drive is constituted by uniform coherent tunneling and incommensurate onsite gain loss. find that system can be localized, delocalized, or mixed-phase depending on driving frequency phase shift of complex potential. Two critical frequencies are identified, first one corresponds to largest potential so quasi-energy spectrum still real all states extended, second disappear full spectrum, very weak leads emergence localized when lower than this frequency. In high limit, we separates two regions with respectively tends a constant value captured an effective Hamiltonian.
منابع مشابه
Non-Hermitian localization in biological networks.
We explore the spectra and localization properties of the N-site banded one-dimensional non-Hermitian random matrices that arise naturally in sparse neural networks. Approximately equal numbers of random excitatory and inhibitory connections lead to spatially localized eigenfunctions and an intricate eigenvalue spectrum in the complex plane that controls the spontaneous activity and induced res...
متن کاملDynamical Systems and Non-Hermitian Iterative Eigensolvers
Simple preconditioned iterations can provide an efficient alternative to more elaborate eigenvalue algorithms. We observe that these simple methods can be viewed as forward Euler discretizations of well-known autonomous differential equations that enjoy appealing geometric properties. This connection facilitates novel results describing convergence of a class of preconditioned eigensolvers to t...
متن کاملPopulation Dynamics and Non-Hermitian Localization
We review localization with non-Hermitian time evolution as applied to simple models of population biology with spatially varying growth profiles and convection. Convection leads to a constant imaginary vector potential in the Schrödinger-like operator which appears in linearized growth models. We illustrate the basic ideas by reviewing how convection affects the evolution of a population influ...
متن کاملNon-Hermitian Localization and Population Biology
The time evolution of spatial fluctuations in inhomogeneous d-dimensional biological systems is analyzed. A single species continuous growth model, in which the population disperses via diffusion and convection is considered. Time-independent environmental heterogeneities, such as a random distribution of nutrients or sunlight are modeled by quenched disorder in the growth rate. Linearization o...
متن کاملRitz Value Localization for Non-Hermitian Matrices
Rayleigh–Ritz eigenvalue estimates for Hermitian matrices obey Cauchy interlacing, which has helpful implications for theory, applications, and algorithms. In contrast, few results about the Ritz values of non-Hermitian matrices are known, beyond their containment within the numerical range. To show that such Ritz values enjoy considerable structure, we establish regions within the numerical ra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical review
سال: 2022
ISSN: ['0556-2813', '1538-4497', '1089-490X']
DOI: https://doi.org/10.1103/physreva.105.022215